

Quantitative Chemistry: From Moles to Titrations [1.0]

Section A: The Mole and Molar Mass

Discussion:

If you were tasked with counting every grain of sand on a beach, would you count them one by one, or would you find a way to weigh them instead?

The Central Pillar: The Mole

In chemistry, we cannot count individual atoms because they are too small. Instead, we use the **mole**, which represents a specific number of particles (6.022×10^{23}).

1. The mass of one mole of a substance is called its _____.
2. The units for molar mass are _____ (or $g mol^{-1}$).
3. To find the number of moles (n), we use the formula:

$$n = \frac{m}{M}$$

Where:

- n is the number of _____.
- m is the [mass] / [molar mass] in grams.
- M is the [mass] / [molar mass] from the Periodic Table.

REMEMBER

The "m" vs "M" Trap

Always remember: lowercase **m** is what you weigh on the scale (mass), and uppercase **M** is what you find on the Periodic Table (molar mass).

Draw a 'Formula Triangle' for n , m , and M below:

 Question 1**1 mark**

What is the number of moles in 10.0g of Sodium ($M = 22.99$ g/mol)?

- A. 0.435 mol
- B. 2.299 mol
- C. 229.9 mol
- D. 0.230 mol

 Question 2**1 mark**

If the number of moles increases while the molar mass remains constant, the mass of the sample must:

- A. Decrease
- B. Stay the same
- C. Increase
- D. Become zero

 Question 3**1 mark**

Which of the following contains the greatest number of moles?

- A. 10g of H_2 ($M = 2.02$)
- B. 10g of O_2 ($M = 32.00$)
- C. 10g of Cl_2 ($M = 70.90$)
- D. 10g of N_2 ($M = 28.02$)

 Question 4**1 mark**

The term 'molar mass' refers to the mass of:

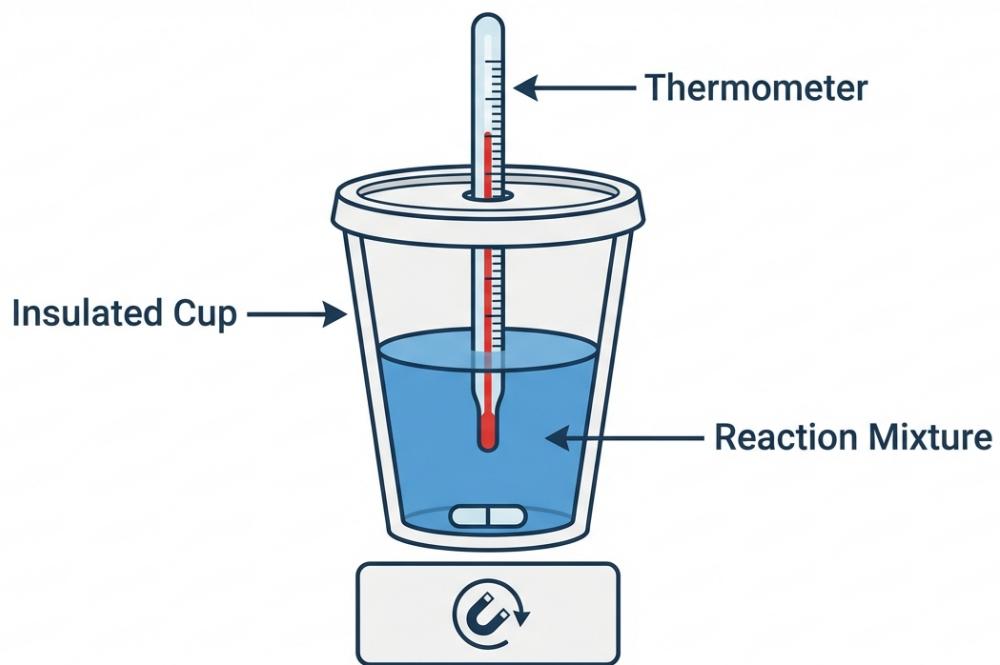
- A. One atom
- B. One molecule
- C. 6.022×10^{23} particles
- D. 1 kilogram of substance

Specific Heat Capacity and Energy

When we add heat to a substance, its temperature rises. The amount of energy required to raise the temperature of 1 gram of a substance by 1 degree Celsius is called the (c).

The formula for heat energy (q) is:

$$q = mc\Delta T$$


- q = Heat energy in (J).
- m = Mass of the substance being heated (usually water) in .
- c = Specific heat capacity (for water, this is $J g^{-1} K^{-1}$).
- ΔT = Change in ($T_{final} - T_{initial}$).

COMMON MISCONCEPTION

Mass of what?

In calorimetry, m is the mass of the **surroundings** (usually the water in the beaker), NOT the mass of the fuel or the solid being reacted.

Question 6

2 marks

Mirror Question: Determine the mass of 0.750 moles of Zinc Nitrate ($Zn(NO_3)_2$).
(Molar masses: Zn = 65.38, N = 14.01, O = 16.00 g/mol)

Question 7

3 marks

A sample of an unknown metal weighs 15.5g and contains 0.277 moles. Calculate the molar mass of the metal and identify it using a periodic table.

**Access the full workbook
for free in our Chemistry
3+4 Headstart class.**

Every lesson at Trajectory Education comes with useful resources just like this, with no additional fee or surprise payment.

[Enrol for free to access](#)

[or ask us a question](#)